REVIEW

SECTION 7.1

What Is Radioactivity?

- 1. Match the type of nuclear radiation on the left with the correct description on the right.
 - **a.** beta particles
 - **b.** neutron emission
 - **c.** alpha particles
 - **d.** gamma rays
- A. helium-4 nuclei
- **B.** high-energy electromagnetic radiation emitted by a
- C. electrons emitted by neutrons decaying in an unstable nucleus
- **D.** release of high-energy neutrons
- 2. Determine the amount of time it takes for three-fourths of a radioactive sample of an isotope of bromine to decay. The half-life of the isotope is 16.5 hours.
- 3. Complete the following radioactive decay equations by identifying the isotope X. Indicate whether alpha or beta decay occurs.

a.
$${}^{214}_{82}\text{Pb} \rightarrow {}^{A}_{Z}X + {}^{0}_{-1}e$$

b.
$${}^{214}_{83}$$
Bi $\rightarrow {}^{A}_{Z}X + {}^{0}_{-1}e$

c.
$${}^{2}_{84}^{4}\text{Po} \rightarrow {}^{A}_{Z}X + {}^{4}_{2}\text{He}$$

- 4. Explain how it is possible that negatively charged beta particles are emitted from a positively charged nucleus during nuclear decay.
- 5. Determine the half-life of a radioactive substance that has changed through radioactive decay. After 40 days, the original substance left is one-sixteenth of the original amount.
- **6. Identify** which of the following is true for gamma ray emission.
 - **a.** The atomic number increases but the atomic mass stays the same.
 - **b.** Both the atomic number and the atomic mass remain the same.
 - c. The atomic number decreases and the atomic mass increases.
 - **d.** The atomic number stays the same and the atomic mass decreases.
- 7. **Predict** the change in the atomic number of an atom after beta decay.
 - a. atomic number increases by 1
 - **b.** atomic number decreases by 2
 - c. atomic number decreases by 1
 - d. atomic number stays the same